

LSST FPA Meeting

BNL

February 4-5, 2004

Introduction

S. Aronson

Agenda: Wednesday Feb. 4

9:00	Sam Aronson	Welcome	
9:15	Steve Kahn	LSST Camera Overview	(15)
9:25	Don Figer	Status of CMOS Detector Technology for LSST	(35+10)
10:10	Steve Holland	Technology tradeoffs for fully-depleted	
		visible image sensors	(45+10)
11:05		Coffee Break	
11:25	Barry Burke	CCD Technology for LSST	(45+10)
12:20		Lunch	
1:20	Jim Janesick	Scientific CMOS Pixels	(30+10)
2:00	Stuart Marshall	A CMOS Based LSST Imaging Conceptual	(00 + 10)
		Design for Enhanced Dynamic Range	(20+10)
2:30	Natalie Roe	ASIC Development for SNAP Focal Plane Readout	(30+10)
3:10	Tim Thurston	Cooling and Thermal Management	(30+10)
3:50		Coffee Break	
4:10	Kris Kwiatkowsky	The 5MHz/2Mpx Rockwell-LANL Imager - early experiences, joys and tribulations	(20+10)
4:40	George Jacoby	Pros and Cons of Orthogonal Transfer CCD Arrays For LSST	(15+5)
5:00	John Geary	Lessons Learned from Large Procurements of CCDs	(30+10)
6:15		depart for dinner	

Agenda: Thursday Feb. 5

8:30	Tony Tyson	Status of Vendor Inquiries	(45)
9:15	A11	<u>Discussion:</u> Analysis and assessment of sensor technology options	(2:15)
11:30	All	<u>Discussion:</u> What do we do next?	(1:00)
12:30		Adjourn	
2:30	Kem Cook	Discussion on LSST Computing Requirements & RHIC/ATLAS Computing at BNL (Physics – Room 2-160)	

Analysis and assessment of sensor technology options with respect to:

- Principle of operation, QE and PSF
- Readout electronics issues
 - Power dissipation
 - Need for ASIC development
 - ADC
 - Signal processing on/off the sensor
 - Electronic shutter
- Expected performance vs. LSST requirements
- Development time scale (where is the technology now and required development for LSST)
- Sources of technology; fabrication technology vs. active thickness
- Strengths and weaknesses, potential problems and risks

Some key issues:

- 1. Pixel size
- 2. Sensor active thickness, QE *vs* depth of focus, PSF
- 3. Sensor operating temperature
- 4. Readout speed and noise
- 5. Saturation and blooming characteristics
- 6. Critical electronics

7. Procurement issues and conflict of interests

Sensor Technology Status and Expectations

- 1. Status of presently available devices with respect to LSST requirements;
- 2. Devices and technologies which might approach LSST requirements with developments and design advances within 2-3 years;
- 3. New device concepts and technology developments requiring more than 3 years.

